Assignment I MTH 512 , Fall 2018

Ayman Badawi

QUESTION 1. Convince me why the following are not subspaces (short answer)

- F is a field and $D=\left\{f(x) \in F[x] \mid f(1)=0\right.$ or $\left.f^{\prime}(1)=0\right\}$
- $D=\left\{\left(a,-a, a^{2}\right) \mid a \in R\right\}$.
- F is a field $D=\left\{A \in F^{2 \times 2}| | A \mid=0\right\}$.
- F is a field $D=\left\{A \in F^{3 \times 3} \mid \operatorname{rank}(A) \leq 2\right\}$.

QUESTION 2. (short proof) Let V, W be vector spaces over a field such that $I N(V)=I N(W)=n<\infty$ and $T: V \rightarrow V$ be a linear transformation. If $Z(T)=\left\{0_{V}\right\}$, (i.e. $I N(Z(T))=0$), then Convince me that T is onto and 1-1 (i.e., T is an isomorphism).
(short proof) Let V, W be vector spaces over a field such that $I N(V)=I N(W)=n<\infty$ and $T: V \rightarrow V$ be a linear transformation. If T is onto, convince me that T is 1-1.

QUESTION 3. Let $T: R^{4} \rightarrow R^{3}$ such that $T\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(-a_{1}, a_{1}+a_{3}+a_{4},-a_{3}-a_{4}\right)$. Then clearly T is a linear transformation (do not show that).

- Find the standard matrix representation of T.
- Find $Z(T)$ and write it as span
- Find the Range(T) and write it as span
- Does the point $(0,1,0) \in \operatorname{Range}(T)$?

QUESTION 4. Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation, such that $T(4,0,0)=(4,-4,-4), T(1,1,1)=(1,-1,-1)$, $T(0,0,2)=(2,-2,-2)$

- (a) Find the standard matrix representation of T . (Note $T\left(e_{1}\right)$ is the first column of $\mathrm{M}, T\left(e_{2}\right)$ is the second column of $\mathbf{M}, T\left(e_{3}\right)$ is the third column of \mathbf{M})
- Use (a) and find $T(2,3,5)$
- Use (a) and find all zeros of T (i.e., $\mathrm{Z}(\mathrm{T})$) and write it as span (i.e., Write $\operatorname{Ker}(\mathrm{T})$ as span) .
- Find Range(T) and write it as span
- Let $D=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in R^{3} \mid T\left(\left(a_{1}, a_{2}, a_{3}\right)\right)=(2,-2,-2)\right\}$. Describe the elements in D

QUESTION 5. Let P_{5} be the set of all polynomials of degree <5 with coefficients from Z_{3}. Convince me that $F=$ $\left\{f(x) \in P_{5} \mid f^{\prime}(1)=0\right.$ and $\left.f(1)=0\right\}$ is a subspace of P_{5}. Find a basis for F. What is the size of F (i.e., $|F|$).

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

